skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fang, Wanzhen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Although silicon-based nanomaterials (Si-based NMs) can promote crop yield and alleviate biotic and abiotic stress, the underlying performance mechanisms are unknown. In the present study, the effect of the root application of Si-based NMs on the physiological responses of cherry radish (Raphanus sativus L.) was evaluated in a life cycle experiment. Root exposure to 0.1% (w/w) Si-based NMs significantly increased total fresh weight, total chlorophyll and carotenoids by 36.0%, 14.2% and 18.7%, respectively, relative to untreated controls. The nutritional content of the edible tissue was significantly enhanced, with an increase of 23.7% in reducing sugar, 24.8% in total sugar, and 232.7% in proteins; in addition, a number of nutritional elements (Cu, Mn, Fe, Zn, K, Ca, and P) were increased. Si-based NMs exposure positively altered the phytohormone network and decreased abscisic acid content, both of which promoted radish fresh weight. LC-MS-based metabolomic analysis shows that Si-based NMs increased the contents of most carbohydrates (e.g., α-D-glucose, acetylgalactosamine, lactose, fructose, etc.) and amino acids (e.g., asparagine, glutamic acid, glutamine, valine, arginine, etc.), subsequently improving overall nutritional values. Overall, nanoscale Si-based agrochemicals have significant potential as a novel strategy for the biofortification of vegetable crops in sustainable nano-enabled agriculture. 
    more » « less